Alpha Omega Wireless Blog

Critical Wireless Communications Infrastructure and Essential Workers

Posted by Joe Wargo on Fri, Mar 27, 2020 @ 03:29 PM

The way the world's employees work is forever changed. The Covid-19 Coronavirus has shocked the world and is making us all look at how we do things and how we work. Our culture used to be to a work environment that people would go and congregate in common offices and work spaces. Overnight we have seen the hyper growth of the work from home way of doing business. The concept of a remote workforce has been around for a long time and many companies have taken advantage of all the benefits of a virtual workforce. There are obvious jobs that require for people to come to a physical location to work together but there are a lot of job functions that can be done remotely and outside of crowded office spaces. Great technology makes it possible but one thing a virtual workforce requires more than ever is greater bandwidth. 

SAF Austin 11GHz

High bandwidth wireless infrastructure is the key to the virtual workforce. With just the sheer magnitude of people working remotely our nations critical data networks are being tested. Organizations are now finding out that they need bigger internet gateways but they also ned to increase their wide area ("WAN") and local area ("LAN") networks. A GigE network yesterday is just not enough for the primary backhaul. The new standard is 10Gig and beyond. This is why wireless communications is designated as critical infrastructure and the workers that build and maintain wireless networks are designated as "Essential Workers."

Screen Shot 2020-03-24 at 10.57.00 AM

5G LTE, licensed microwave backhaul, last mile wireless, SCADA telemetry, or in-building DAS (distributed antennas systems) all are critical to support virtual workers and a mobile workforce. As everyone is dong their part to help stop the virus and keep each other safe there is a lot of confusion on who should be out working. Wireless communication sector has been deemed by the Federal and all State Governments as critical infrastructure and the wireless industry's "essential workers" are out doing their part to keep the world communicating and working. 

In most all cases wireless technicians and tower climbers never come in contact client personnel or other individual providing a safe workplace for essential works that are in guidelines of all State and Federal requirements. Most of the time the wireless workforce are outside on towers and roof tops building out new infrastructure or maintaining existing wireless networks.

How AO Wireless can help with the virtual workforce:

  • Up to 10Gig Full Duplex Networks - With remote workforce comes the need for higher bandwidth. From 1GigE to 10Gig FD there are wireless solutions to increase bandwidth.
  • Cloud Based WNMS (wireless network monitoring) - AO Wireless provides an NMS system focused on wireless devices where we monitor and support wireless networks. We provide our clients a cloud based portal so they can remotely manage their networks along side our great support teams. 
  • Annual Support and Maintenance Programs - We have a 3 tier support program that provides annual maintenance and on-call / on-site support to keep you up and running. 
  • Leased Networks - We can deploy within days a leased wireless network to provide bandwidth right away. 
  • Staff Support - We can provide remote and on-site support while our client personnel are working from home.
  • Emergency Response - If you have issues give us a call!

Stay Safe and Healthy Everyone!

Tags: Alpha Omega Wireless, Point to Point Wireless, Licensed wireless, Wireless Installation, Wireless Industry, AO Wireless, wireless mesh, wireless backhaul, wireless network, DAS

Alpha Omega Wireless Deploys Licensed WiMax for Utilities

Posted by Joe Wargo on Wed, Aug 19, 2015 @ 10:30 AM

This article discusses a recent licensed WiMax case study that Siemens AG, Industrial Communications group and one of our utility clients released. It talks about some unique communications challenges our utility client had and how we were able to solve them using licensed microwave point to point wireless backhaul and licensed WiMax. Like most all utilities they have dozens of sites out in the field of their coverage area. Most of these sites have SCADA, cameras, access control, meters, etc. They needed real time connectivity and reporting.

Wireless Backhaul Licensed WiMax

The solution was to provide licensed wireless connectivity to multiple fixed locations, using a point to multipoint wireless Ethernet bridge system. This wireless backhaul network would allow for SCADA telemetry, remote network connectivity, and also allow some mobility for their workforce. AO Wireless choose to use Siemens RuggedComm Licensed WiMax for this solution. AO Wireless helped our client acquire spectrum in the 2.5GHz band from a carrier. Basically it only cost them $1500 a year to own their own licensed radio frequncy that provides interference free operations, greater wireless security, and better RF probabgation.

As part of the overall wireless backhaul network, AO Wireless, also built out over 575 miles of full duplex, licensed point to point microwave backhaul. The point to point licensed wireless backhaul was set up in a 2+0 configuration with multiple ring topologies to provide greater redundancy and greater wireless Ethernet capacity. This outdoor wireless network (wireless WAN) gives them a GigE throughput capacity for future needs.

Take a look at the case study if:

You are interested in licensed WiMax / LTE

Have multiple sites that need greater bandwidth

Interested in High Bandwidth point to point connectivity

Need 99.999% predictable reliability connectivity


Click for free Licnesed WiMax Case Study:

Licensed WiMax Case Study

Tags: Point to Point Wireless, Licensed wireless, Point to Multipoint, WiMax, wireless backhaul

Wireless Backhaul for the Smart Grid

Posted by Joe Wargo on Wed, Jun 05, 2013 @ 08:19 AM

There is a lot of talk about the push and mandates about modernizing and moving our electrical system to the Smart Grid. The electrical grid in the USA is out of date and doesn’t allow for the use of modern technology to provide more efficient and cost effective power generation, delivery, and consumption of electrical energy. The goal of modernizing our electrical grid by using current technologies is to provide more reliable distribution, improve fault detection and allow self-healing of the network without the intervention of technicians, create greater efficiencies in monitoring and load adjustments based on peak using times and locations, provide greater security to the grid, and to empower the consumer to be able to better manage their usage and costs.

Future Smart Grid

To make the Smart Grid a reality the implementation of modern communication technology needs to be deployed. Technologies such as, smart meters, intelligent thermostats and appliances, real time sensor metering and controls, and remote monitoring all require the use of reliable IP based communication infrastructure networks. The problem is electrical utility organizations’ electrical network (substations and end consumers) covers vast geographic areas. Many of which are not always near readily available fiber connectivity. This is especially true in rural areas. Even in urban areas there is sometimes difficulty in last mile connections where needed.

In order to build out the Smart Grid wireless backhaul plays a vital role and solves many problems by providing necessary high-speed bandwidth for the use of Smart Grid technologies. By the utilities using wireless Ethernet bridge technologies the utilities gain greater security by having a private network, they can also build in wireless redundancy for greater reliability, have quicker implementation time, realize huge cost savings, provide their workforce with wireless mobility, and have the flexibility for future expansion and growth.

Utility Wireless

Since the utilities have right-a-way access and easements it becomes easy for them to build out a wireless backhaul network using point to point wireless bridges. Fiber equivalent networks can be achieved with licensed microwave backhaul (see more at “Understanding Microwave Communication Frequencies and Point to Point Wireless Bridge Compared to Fiber”). Today a licensed microwave link can provide 6Gbps+ full duplex wireless connectivity. Using a wireless repeater can allow for long distance wireless backhaul. A typical microwave link can be deployed beyond 20 to 30 miles in a single point to point wireless bridge.

With a core high bandwidth microwave backhaul infrastructure, the use of high speed point to multipoint wireless can be deployed for last mile wireless connectivity. Technologies like WiMax backhaul and LTE allow for licensed interference free point to multipoint wireless bridge connections. True usable IP bandwidth of 10Mbps to 100Mbps can be delivered to the field using point to multipoint wireless Ethernet bridge systems. Wireless Mobility can bring high-speed data connections to workforce vehicles allowing for remote access of data files, email, work orders, and VoIP.

Bringing wireless Ethernet connectivity to the grid and to substations provides the ability to not only perform RTU / PLC monitoring and management, but also opens the way for wireless video surveillance and perimeter security, access control, alarm monitoring, remote workforce capability and access, and real time data collection. Most of all, wireless backhaul allows the integration of other third party Smart Grid devices like Smart Meters, remote switching, and SCADA.

Wireless Ethernet bridges bring the necessary infrastructure to Smart Grid technology. The main issue is that electrical organizations are really good at power generation and delivery, but they are not necessarily experts in telecommunications. It’s not best practices for them to build the internal expertise to build or maintain a large complex wireless backhaul network. Recently attending a Smart Grid conference it became apparent that many electrical organizations have relied on manufacture vendors, whose only goal is to move their product, to guide and influence the type of wireless hardware and wireless network topology they are trying to use for their telecommunications infrastructure. This becomes very problematic when it comes to the quality of RF (radio frequency) devices being used and the overall wireless network design.

In order to provide a long-term, reliable, interference free, and scalable wireless infrastructure it is important to use best of breed, carrier grade infrastructure, along with the use of proper frequency spectrum. Also from a security standpoint the proper wireless devices should be used and configured properly. It’s amazing to see how many electrical organizations have deployed value line, Wi-Fi chipset based, unlicensed wireless Ethernet bridges using 900MHz, 2.4GHz, 4.9GHz, and 5.8GHz for their mission critical network. Many of these systems only have a five year mean to failure time rating and are easily effected by wireless interference. These systems are in themselves not bad or lack some quality, but they fit where they fit and the Smart Grid infrastructure may not be the best use of these unlicensed wireless Ethernet bridge systems.

Electrical utilities have a lot of licensed microwave spectrum available for their use for free or at a very low cost basis. On the flip side many microwave radio systems are built for true full duplex operations, operate at the lowest possible latency, run interference free, and are built for a 20+year life cycle. There is also hardened point to multipoint wireless systems and SCADA telemetry radios designed for EMI protection precisely for use around high voltage applications. 

As with any technology there is value level and enterprise level equipment and software. For mission critical wireless networks there is a large distinction between the quality, performance, and reliability of the two. Smart Grid implementers need to receive more education and proper knowledge transfer from the wireless backhaul industry so that the right business choices can be made on behalf of the country’s critical electrical infrastructure and ultimately the end consumer.

Tags: Alpha Omega Wireless, Point to Point Wireless, Licensed wireless, General, Wireless Industry, AO Wireless, Point to Multipoint

Point to Point Wireless Bridge Through a Glass Window

Posted by Joe Wargo on Thu, Mar 14, 2013 @ 03:37 PM

When we think of wireless backhaul and microwave communications we typically think of a point to point wireless bridge that is from communication tower to another tower or building rooftop to another building rooftop. In most all cases for wireless point to point microwave backhaul to work there needs to be line of sight (“LOS”) from one antenna to the other. Some other important factors for a point to point wireless bridge to function correctly is to have proper Fresnel Zone clearance and calculated system gain.

In order to make sure a wireless point to point link, whether you are talking about a licensed microwave backhaul or a 5GHz unlicensed point to point wireless Ethernet bridge, will function properly and have predictable reliability a proper wireless network design and path calculation needs to be performed. By performing a quality (radio frequency) RF path calculation we can determine the Free Space Path Loss and overall wireless system gain based on a particular wireless radio system’s receiver sensitivity threshold. This helps determine frequencies that can be used, output power, RSL (received signal level), polarizations, antenna sizes, and antenna heights. The other factor in designing a point to point wireless bridge is to take into account the signal to noise ratio (the incoming signal quality level over any external frequency noise / interference).

With a typical outdoor point to point wireless link it is easy for a wireless installation company to perform all the necessary path calculations and engineering to design a wireless point to point link with 99.999% predictable reliability (<5min of predictable outage a year). But what happens if you don’t have roof rights access to do a wireless installation on the building’s roof or there is no way to cable from the network room / IDF to the roof? Yet from the building’s window you can look out and see the other end clear as day with good LOS. This happens in the enterprise world where a company may occupy a certain floor of a high rise but can’t get roof right access either because of physical challenges or lease contract issues. Why not just put the antenna behind one of the windows?

Shooting a point to point wireless backhaul through glass is not as easy as it may seem. Wireless bridges are in essence sound waves that operate in frequencies that humans can’t obviously hear. Most all glass used in building construction have some sort of sound attenuation (whether just buy the materials in the glass or on purpose to block out outside sound). In the past most glass windows had lead or other metallic compounds in them. Newer windows use a special sound attenuation film to make the inside more quite. Sometimes this glass also uses special films for polarization to block sun glare.  This attenuation causes the signal quality of the point to point wireless system to be degraded in the form of signal loss.

Wireless through glass

Windows can also have a reflective property that can cause the wireless bridge to bounce the TX (transmit) signal back into itself causing self-interference and distortion on the radio system. When this happens we see a lot of errors on the network as BER (Bit Error Ratio), Jitter, and CRC errors. This can also over time damage the wireless point to point radio end.

So can it be done? Yes! Over the years we have successfully done wireless installations from behind glass and recently did a critical point to point wireless backhaul at SXSW for a major video streaming event. How did we do it? First we took into account all the possible issues as mentioned above. The first step was to calculate the link budget by doing a detailed path calculation by building in the possible loss due to the attenuation of the glass. Because the link had to be installed using an unlicensed wireless Ethernet bridge we decided to use a MIMO (dual polarization radio that uses both vertical and horizontal polarized TX/RX signals).  In the recent case the shot was very short (less than one mile) and the environmental noise in 5.8GHz was extremely high. We decided to use 5.3GHz band that operates in DFS (dynamic frequency selection – basically channel hopper) in the USA.  Then comes the fun part of the installation. We had to play with the polarizations of each end’s antennas, adjust the power output levels on each side separately, and move the radio end behind the glass back and forth from the glass to find the optimum distance of the antenna from the glass.

Wireless Glass Shot

There are other radio specific settings that can be applied to help the radio from getting false radar detection (which is a requirement of the FCC that causes the radio to jump channels and lock out various frequencies if it sees a DFS channel signal from another source. This happens when the glass reflects its own signal back into itself out of phase. The system needs to be adjusted so that it doesn’t think its own signal is from another outside source. If the 5.8GHz bad was clean of outside interference you still need to adjust so that the radio doesn’t take on errors.

At the end of the day putting one end of the wireless point to point system behind glass allowed over 100Mbps of bandwidth to be used for the event. Time and material costs were saved by not having to run fiber (due to the length of the cable run to the nearest IDF (network closet) to the roof along with power. It is not racommended to shoot point to point wireless through a glass window and it is always Best Practice to go from rooftop to rooftop, but sometimes its the only option. It takes a lot of planning and back and forth testing, but if the wireless installation is done properly shooting wireless backhaul through glass can work!

Tags: Alpha Omega Wireless, Point to Point Wireless, General, Un-lincesed Wireless, AO Wireless, Wireless 101

Wireless Backhaul Used All Over SXSW

Posted by Joe Wargo on Sat, Mar 09, 2013 @ 06:06 PM

Wireless backhaul is used all over Austin during the SXSW event. In order to get Internet connectivity to major events and venues wireless bridges, in forms of point to point wireless bridge and point to multipoint wireless bridge technologies are used. At the events and venues Wi-Fi is also deployed to help provide wireless communications to enhance the user experience.

Wireless Repeater SXSW

At the SXSW 2013 (South by Southwest) Film and Music Festival tens of thousands of people from around the world swarm to Austin, TX to experience the latest in film, technology, gaming, and see the over 2000 bands that playing live at over 200 venues. The SXSW event merges film, music, and technology all in one place. Technology and social media are playing an even larger role at SXSW. Major technology, social media, and corporate giants like, Dell, Samsung, Google, Microsoft, AT&T, Yahoo, and others all have a presence and host amazing parties and events at SXSW.

In years past, one of the biggest complaints was the lack of broadband connectivity, that's if you could get connected at all. With so many people in such a concentrated area many of the cellular networks get overloaded and come to a crawl. Add to the fact that there is now a 2 to 1 ratio of Wi-Fi enabled devices to people. Laptops, iPhones, iPads, and all the other smartphone devices were present everywhere. This year SXSW wants to make sure that they can enhance the attendees experience by bringing wireless bandwidth to the people. Plus all the major event hosts are using a large amount of wireless bandwidth for production and exhibit displays.

The wireless communication at SXSW is being done by deploying a GigE microwave backhaul from a major local telecommunication provider to the roof of a hotel close to all the action. That location acts as a wireless repeater. Multiple point to point wireless bridge links are used from the wireless repeater location to provide wireless connections from 400Mbps full duplex wireless connectivity to 100Mbps wireless bridges.

Also from the same roof top that the wireless point to point links are initiated, point to multipoint wireless systems are used to provide multiple wireless connections. The point to multipoint wireless bridge end nodes receive anywhere from 10Mbps up to 100Mbps of wireless bandwidth.

In order to pull off having so much wireless frequency all over town coming from the wireless repeater site, multiple radio frequencies are used during the wireless network design and wireless installation. One of the largest challenges is the fact that during SXSW there is a lot of wireless interference caused by so many people deploying outdoor wireless, to include outdoor Wi-Fi.  Plus, since SXSW is a temporary event, the use of licensed microwave is not feasible and unlicensed wireless has to be used. Frequencies ranging from millimeter-wave (60GHz), unlicensed 24GHz point to point microwave, and unlicensed 5.3GHz and 5.8GHz wireless radios are used.

For the Wi-Fi at some of the events, wireless Wi-Fi arrays are used to deploy high density wireless communications (see “AO Wireless Deploys Xirrus Arrays at SXSW for High-Density Wireless”). SXSW doesn’t provide Wi-Fi at all the events but at some of the major ones they do in order to make sure the end user experience is enhanced. There is just too many venues to put Wi-Fi at all of them.

By using wireless backhaul, both point to point wireless bridges and point to multipoint wireless Ethernet bridges, wireless connectivity is deployed to venues and events that can be in buildings or out in the middle of a field or parking lot. Broadband is made available for production, point of sale systems, ticketing systems, exhibit interaction, and most of all an enhanced attendee experience.

Wireless backhaul used for the core network distribution and last mile wireless used to provide bandwidth to special event venues gives SXSW a lot of flexibility and the ability to provide Wi-Fi to attendees. Once the event is over the equipment will be removed as if it was never there.

Tags: Point to Point Wireless, General, Un-lincesed Wireless, Wireless Industry, Point to Multipoint

Point to Point Wireless Bridge Compared to Fiber

Posted by Joe Wargo on Wed, Feb 20, 2013 @ 04:51 PM

As a country we have relied on fiber communications as our primary means of wide area network connectivity. Fiber though is extremely expensive to provision due to right away access, permitting, construction, labor, and cost of material.  Meanwhile a lot of other countries have leap frogged the USA by deploying fixed wireless microwave communications. Many countries around the world are deploying wireless bridge microwave backhaul as their primary backbone telecommunications network. The costs of deploying a point to point wireless bridge can have a ROI of less than three months compared to even leasing fiber that is pre-existing.

Wireless backhaul can be deployed in a matter of weeks if not days. Wireless bridges such as unlicensed 5.8GHz point to point wireless and point to multipoint wireless, in 5.8GHz and 3.65GHz WiMax can be purchased off the shelf and installed in a few days. Licensed microwave communications in the form of a point to point wireless bridge, also called fixed wireless bridges, can be obtained and installed in a few weeks. (see more information "Understanding Fixed Wireless Backhaul Configurations")

wireless bridge

With advancements in technology and newer regulation from the FCC, wireless Ethernet bridge systems can deliver over GigE (more than 1Gbps full duplex) throughput. Equivalent to that of fiber. A fixed wireless microwave link can go upwards of 50 miles. If proper wireless system design is done, a fixed wireless Ethernet bridge can provide a predictable reliability of 99.999% uptime. That's less than 5 minutes of predictable outage a year.

Most people don't think about the fiber once it leaves their building or know the path it takes. Fiber in urban areas runs inside sewer lines, underground conduits, and aerial on phone and light poles. In rural areas fiber mostly runs aerial along telephone and electric poles. Ever drive down a road and see a bunch of wood telephone poles leaning from side to side? Well that might just be the fiber your network is running on.

Fiber Cut

Ever question how long it takes for a telecommunications company to do a truck roll to repair a cut fiber? If it's a clean break fiber can sometimes be fusion spliced back together. In most cases where a fiber pole goes down or gets ripped out by a backhoe, the fiber gets stretch and has to be replace but cutting it at two ends and a new piece fusion spliced back in. This can take hours if not days to accomplish. What would be the cost to your business if that occurred?

Microwave communication can be in the form of a point to point wireless backhaul, a point to multipoint wireless bridge, or a mesh wireless Ethernet bridge. If a microwave radio fails it can be swapped out in the matter of minutes (provided a spare is maintained). After an earthquake or other natural disaster, a wireless system can be realigned immediately getting communications back up and running.  The biggest concern with wireless backhaul is the potential for wireless interference. Using a licensed microwave link can solve any interference concerns.(See more information "Wireless Backhaul Can Prevent Network Outages")

In order to get broadband across the USA at any reasonable time frame and at realistic costs we must turn to wireless backhaul technology. Fixed wireless, using both point to point wireless bridges and point to multipoint wireless (LTE and WiMax) can help expand our wide area network reach with carrier grade performance and reliability.

Tags: Alpha Omega Wireless, Point to Point Wireless, Licensed wireless, Wireless Industry, AO Wireless, Point to Multipoint, WiMax

Licensed Point to Point Wireless Bridge Solutions Come of Age

Posted by Joe Wargo on Fri, Dec 14, 2012 @ 04:03 PM

Licensed point to point wireless bridge systems are now becoming more of the norm rather than the exception. Historically, everyone turned to fiber as their primary choice for point to point data connectivity. Now with the recent changes to FCC regulations on point to point microwave, also referred to as “ptp wireless”, the opportunity to create high-speed bandwidth wireless point to point connections are easier than ever.

                                          Wireless 2 0        Wireless Roof Top

Point to point wireless backhaul, often referred to as fixed wireless backhaul or wireless Ethernet bridges, is a great solution for creating network connectivity between locations. Wireless point to point can be used as primary or redundant wireless networks. Wireless backhaul can be used for establishing data and voice network connections from building to building, communication tower to communication tower, field locations to a network presence, connecting network fiber segments, or last mile connections, etc. Point to point wireless Ethernet bridges can also be used for connecting devices on to networks, like IP video cameras, SCADA devices, etc.

Licensed point to point wireless backhaul is far easier and cheaper to deploy than fiber (See “Wireless Backhaul Makes Financial Sense”). Costs of running fiber can be upwards of $100K to $1M a mile. Point to point broadband wireless, especially point to point licensed wireless networks can now compete with fiber, not only in price per Mbps, but in performance and reliability. Plus there are many advantages of owning a private network, like security, support, and reliability.

The FCC has opened up the ability to use larger licensed point to point microwave spectrum channels (like in the 11GHz point to point licensed microwave spectrum). They also have allowed for higher ptp wireless modulation schemes up to 1024QAM at channel widths up to 80MHz wide. Plus with recent use of XPIC systems it is much easier to get licensed point to point microwave frequencies on a given path. (See: “Licensed Microwave Wireless Backhaul” for more information about point to point licensed microwave systems or “Licensed Microwave vs. Unlicensed Outdoor Wireless” for more information about the different types of point to point wireless systems.)

Today licensed point to point microwave radios can provide interference free GigE full duplex connectivity at 99.999% predictable reliability, and with <2ms latency. Multiple point to point microwave radios can be installed together and configured for even higher bandwidth, while providing compete failover redundancy, using 2+0, 3+0, and 4+0 configurations. Links upwards of 30+ miles can be achieved. Even further distances can be installed using a wireless repeater from a tall building roof top or communication tower.

The one disadvantage of point to point wireless bridge systems is the need for line-of-sight from antenna to antenna (aka “LOS”). This can be an issue with low lying buildings and trees. In those cases using a communication tower for a wireless repeater can solve the issue in many cases. Communication towers are all over the place. There are many publicly traded companies that offer lease space for point to point microwave antennas. If there is the ability to find land right use communication towers are relatively inexpensive to have installed. Point to point wireless backhaul has a rapid ROI (typically less than 6 months with no reoccurring costs). Adding a tower into the solutions may only add 3 to 4 months until the CAPEX ROI is achieved. Free standing towers at 100ft in height can be installed from $65,000 to $85,000. That is not much money when you look at the big picture.

Many countries around the world have leapfrogged the United States when it comes to wireless backhaul and taking advantage of wireless bandwidth. Here we have relied on fiber as the top pick for broadband, but the cost per mile and the issues with permitting and right of way access present an ongoing challenge, especially in rural America. Using point to point wireless bridges can expand the reach of high broadband bandwidth where fiber is a challenge.

Whether a private organization, an agricultural group, government agency, utility, healthcare organization, or education facility point to point licensed wireless maybe a perfect alternative to fiber or lease lines. 

Tags: Point to Point Wireless, Licensed wireless, Wireless Industry, Wireless 101

High Density Wi-Fi at SXSW

Posted by Joe Wargo on Fri, Mar 30, 2012 @ 12:14 PM

Wireless connectivity and wireless mobility has become a way of life. Today most everyone is carrying a mobile device and expects to have high speed wireless bandwidth everywhere they go. In many cases, people now have more than one wireless device carrying around their smart phone and their tablet device (e.g. iPad). A major problem in the wireless industry is when wireless networks get overloaded due to the high density of users on a local network. This problem becomes even greater when you have events that have thousands of people all trying to get online with their wireless devices all at the same time. Cellular networks can get slammed. This is why many carriers try and off load people onto Wi-Fi hotspots in order to free up the demand for their 3G / 4G networks.

A rule of thumb is to have a max capacity of 40 active Wi-Fi users on an access point at any given time. Now many manufactures have pushed that limit by using various techniques like timing algorithms, but as a general rule for high performance 40 is a good number. In high density wireless applications the thing to remember is that even if everyone is not trying to use their wireless handheld device, the devices still beacon the network. This causes a lot of traffic and overhead to an access point.

So what happens when you put thousands of people in a small area all trying to get a wireless Ethernet bridge using Wi-Fi connectivity? If you do the math you would have to add a lot of wireless access points in an area to handle the load. With Wi-Fi 802.11b/g 2.4GHz there are only three non-overlapping channels. In Wi-Fi 802.11a there are 8+ depending on the channel widths. Most all devices will try and use the 2.4GHz 802.11b/g Wi-Fi first by default. With only three non overlapping channels it becomes difficult to put a lot of AP’s next to each other in a small place, especially if the AP’s are using omni directional antennas. You have to do strict channel and power planning.

Recently, we were asked to provide Wi-Fi for over 3000 users in an area of 100ft x 500ft for an outdoor high profile event party for SXSW. We were able to not only provide Wi-Fi for that many users but where able to provide high speed seemly roaming without any problems. How did we do it?

First, we brought in a 300Mbps full duplex wireless backhaul to the event from a location across town using microwave communication. We didn’t have direct line of sight so we used a rooftop to create a wireless repeater. We did a point to point wireless shot from the main building to the wireless repeater and then another point to point wireless bridge down to the outdoor event. We used 24GHz SAF Tehnika Lumina radios for the microwave communication.

For the Wi-Fi at the event we choose to use a Wi-Fi array system by Xirrus. Xirrus arrays use multiple AP’s with sector antennas to distribute the Wi-Fi signals much like a cellular site design. This allows for greater output and better RF channel control. With the Xirrus system we were also able to force devices that had 802.11a 5GHz capability onto a 5GHz AP to free up the demand of the 802.11b/g 2,4GHz AP’s. Each Xirrus array has its own built in controller which communicates with every other array in the system. This was very effective and saved on costs of having to have an expensive traditional Wi-Fi controller on site. We weren’t able to cable each array directly so in some cases we used a millimeter wave solution to create a wireless Ethernet bridge between arrays.

Xirrus Array

The crowd loved it and it was amazing to be able to have wireless roaming capability on my iPad while Skyping my wife who couldn’t attend the event!

Tags: Alpha Omega Wireless, Point to Point Wireless, Un-lincesed Wireless, Wi-Fi

Wireless Backhaul Used for Live Concert Events by SXSW

Posted by Joe Wargo on Tue, Mar 22, 2011 @ 09:58 PM

What do you do when you need to provide Internet connectivity for one of the largest live music and film festivals in the world? You build out a wireless backhaul network using point to point microwave!

At the 2011 SXSW (South by Southwest) Film and Music Festival tens of thousands of people from around the world swarmed to Austin, TX to experience the latest in film and see the over 2000 bands that played live at over 200 venues. The SXSW event merges film, music and technology all in one place. Technology is playing an even larger role at SXSW. It was the place that Microsoft launched their new IE9 platform.

Austin was filled with members of the media reporting on the events and who's making news in the film and music industry. Bloggers are found on every corner writing about who's playing and getting signed to large record labels. Live concerts were broadcasted live over the Internet. Bands like the Foo Fighters, Duran Duran, Blue October, Kid Rock, Snoop Dogg, Bob Schneider, Crystal Bowersox, and many others showed up without much warning to perform.

In years past, one of the biggest complaints was the lack of broadband connectivity, that's if you could get connected at all. With so many people in such a concentrated area many of the cellular networks get overloaded and come to a crawl. Add to the fact that there is now a 1 to 1 or even a 2 to 1 ratio of wi-fi enabled devices to people. Laptops, iPhones, iPads, and all the other smartphone devices were present everywhere. This year SXSW wanted to make sure that they could enhance the attendees experience by bringing wireless bandwidth to the people.

SXSW could get a large (GigE) Internet pipe to their corporate office but couldn't get connectivity to the major facilities by the local telecommunication providers. With months of planning At&t, Time Warner, Verizon, etc. failed provide a temporary wireless solution. So they turned to Alpha Omega Wireless to solve the problem. We were able to build out a high bandwidth, point to point wireless backhaul network from their facility to some major venues around Austin. Even though the fiber providers couldn't do it with months of advanced notice the wireless installation of SXSW's wireless broadband was deployed in days.

Wireless Backhaul at SXSWBecause of the bandwidth demand we used full duplex microwave radios, such as SAF Lumina licensed microwave and 24GHz unlicensed wireless ethernet bridges, BridgeWave 60GHz wireless links, and a few unlicensed wireless bridges for specific events. Most venues were able to get 100Mbps full duplex wireless connectivity.

Wireless backhaul used for the core network distribution and last mile wireless used to provide bandwidth to special event venues gave SXSW a lot of flexibility and the ability to provide wi-fi to attendees. Once the event was over the equipment was removed as if it was never there.

Tags: Alpha Omega Wireless, Point to Point Wireless, General, Wireless Industry, wireless video, Wireless 101

Wireless Backhaul is a Winner in Natural Disasters

Posted by Joe Wargo on Sat, Mar 12, 2011 @ 11:07 PM

As a Wireless Integrator, that has deployed thousands of wireless Ethernet bridges, I am a firm believer that wireless technology for broadband backhaul not only provides a phenomenal value but in many cases is a better technology for broadband backhaul than traditional fiber / copper infrastructure. Wireless backhaul, whether we are talking about point to point wireless backhaul, using licensed microwave or an unlicensed wireless Ethernet bridge, point to multipoint wireless Ethernet backhaul (using 5GHz unlicensed wireless band or WiMax), or wireless mesh,  can provide greater reliability, last mile presence, quicker deployments, and is far cheaper than hard line infrastructure.

You can say, “Well you do wireless backhaul for a living so you are biased.” Let me tell you about a recent trip I took to a third world country and experienced a natural disaster. Recently I was on the island of Roatan in Honduras while a hurricane passed over the island. We experience sustained winds of 70+mph (with gusts of 100mph) and about 4 inches of rain. During the storm I was uploading photos to Facebook because I had a fast, uninterrupted full 3G cellular services without any outage or latency.

Roatan Hurricain
Remember Katrina? Well most of all the fiber networks in New Orleans were wiped out and untill today it hasn't been all fully replaced. Immediately after the hurricain there wireless networks were installed all over to provide voice and data connectivity.

Island TowerAll throughout the Caribbean and Central America most countries have leapfrogged the USA in the use of wireless backhaul for telecommunications and broadband services. A lot of countries can’t run fiber due to terrain (jungles, mountains, waterways, and a lack of infrastructure) and the pure inability to afford a fiber build out. Wireless though is everywhere. You can be in the jungles of Belize and have a solid 3G connection.  

In order to get broadband connectivity and voice service many of the Caribbean islands depend on point to point microwave connectivity. Then cellular and point to multipoint wireless is used to distribute wireless broadband around the island. One would wonder how well the service coverage would be and the quality of the wireless installation would be in a third world country. After seeing first hand during a hurricane I would say it’s pretty good! Back home in the USA where I am served by a local cable provider my internet connection gets knocked out all the time when we have a storm of 30 to 40MPH winds

Wireless backhaul is far easier and cheaper to deploy than fiber. Broadband wireless networks also allow for a lot of flexibility in access to a POP (point of presence) and network design. The greatest concern most people have with using wireless backhaul is if it’s reliable. From what I experienced I would say it’s extremely reliable. Understand that microwave radio equipment uses extremely little power. In most cases a microwave radio can be powered on a battery or over solar. Most outdoor radio units use -48vDC at 30W. A standard UPS can keep a wireless end node powered for hours. If installed properly a wireless network can provide 99.999% reliability. See my previous articles: “Does Weather Effect Wireless? The 5 Misconceptions - Part 1” and “Is Wireless Reliable? - The 5 Misconceptions - Part 2.”

Like I always say, if wireless backhaul is properly engineered and the wireless installation is done properly it is extremely reliable!

Tags: Point to Point Wireless, Licensed wireless, General, Un-lincesed Wireless, Wireless Industry, Point to Multipoint