Alpha Omega Wireless Blog

Hardened Wireless Backhaul for Utilities

Posted by Joe Wargo on Fri, Feb 07, 2014 @ 02:21 PM

There are a lot of wireless communication radio manufacturers to choose from when designing a wireless backhaul network. A wireless Ethernet bridge can provide bandwidth speeds of a few Kbps to Gbps+ can be achieved.  Today using point to point wireless backhaul, such as licensed microwave communications, can provide over GigE full duplex wireless communications.  Unlicensed outdoor wireless Ethernet bridge systems can provide over 300Mbps wireless throughput. Point to multipoint wireless systems using unlicensed wireless communications can achieve upwards of 300Mbps and technologies like LTE and WiMax can provide over 40Mbps of wireless communications. 

Utilities, such as water (both clean and waste), oil & gas, and electrical, are large users of wireless communication. Utilities typically cover a large geographic service area and have many end points where there is a need for data communications. It becomes physically impossible or at least cost prohibitive to run fiber communications to hundreds of sites that the utilities need communication. Wireless backhaul solves the utilities’ needs and provides them with a means to better monitor and control their infrastructure in the field.

Historically, utilities only needed and used serial communications to monitor field controls, like flow valves, PLC’s and RTU’s, temperature and pressure gages, relays, etc. Over the past several years we have seen that the whole utility industry is migrating to IP based communications for all their field devices and serial communications are going away. So with that many utility organizations have been replacing traditional SCADA telemetry wireless communications with outdoor wireless Ethernet backhaul.

Utilities are building complete wireless backhaul networks to service their territories. Licensed microwave links are being used for a backbone network. Last mile wireless Ethernet bridge systems, like point to multipoint wireless connectivity, LTE, and WiMax are being deployed to wirelessly connect field facilities. Two-Way radio, LTE, and WiMax are being deployed to provide mobility wireless communications. By doing so utilities are making the jump to wireless Ethernet communication to handle their IP networking needs and are also taking the advantage of the higher bandwidth they get with wireless backhaul.

One major problem the utility industry faces is that with so many different wireless Ethernet bridge technologies manufacturers out there many are buying the wrong wireless communication systems. Utilities are usually operating in harsh environments. Weather is always one concern, but many utilities have to contend with various chemicals, EMI (Electromagnetic Interference), and other situations that can cause damage to many of the typical commercial wireless backhaul systems that are used for other industries.

There is specific wireless backhaul manufactured equipment that has been designed to meet the demanding environments most utilities have. Special radio communication systems have been made to handle environments that contain chemicals, have high exposure to salt air, and even to combat EMI in electrical substations.

For licensed wireless backhaul, companies like SAF Tehnika has launched their new Integra microwave communication radio platform. The Integra uses a special aluminum alloy and stainless steel parts that resistant to corrosion. This includes the antenna and mounting brackets. Many wireless bridge systems used for microwave backhaul have the radio in a die cast housing.  If the enclosure is die-casted it means that the metal is melted, which makes it porous. Although all typical die-casted enclosures are covered with special paint, there still are places were the paint ends and water can easily get into the pores and start corroding. Other outdoor wireless system use NEMA type housings for the radio, but the other parts are not protected for harsh environments. The Integra is fully protected from top down.

SAF Integra

Siemens RuggedCom has been known for years for making hardened industrial switch components. Their WiMax platform is just as hardened as their networking equipment. The RuggedCom RuggedMAX WiMax platform is specially made to handle the utility environment. The RuggedCom WiMax base stations and subscriber units are specially designed to handle EMI, which is great for Smart Grid applications, and can be deployed within electrical substations and on structures around high voltage, which we see in the Oil & Gas and Water utility environments.

RuggedMAX Wimax

CalAmp DataRadio has a full line of hardened wireless communication products that have been proven in the utility industry for SCADA backhaul. Their VHF/UHF Viper SC+ radio also gives utilities that are slowly migrating from wireless serial communications to IP based wireless communications. The Viper SC+ can be deployed in a hybrid environment giving the utility all the time needed to slowly convert over their PLC’s and RTU’s from serial to Ethernet. Their new Fusion radio is ideal for vehicle nodes providing LTE backhaul along with in vehicle Wi-Fi handoff.

CalAmp Fusion

There are a lot of great wireless backhaul systems out there, but when it comes to harsh and challenging environments like those that utilities face, certain considerations must be taken into account. Choosing the right wireless backhaul products, whether licensed microwave communications, last mile point to multipoint wireless Ethernet connectivity, or for wireless mobility applications is vital for long term survivability and reliability. Specially made hardened wireless communication systems are ideal for use by utilities. The right tool for the job!

Tags: Alpha Omega Wireless, General, AO Wireless, CalAmp, DataRadio, Smart Grid, LTE, mobility, SAF, RuggedCom

Wireless Backhaul for the Smart Grid

Posted by Joe Wargo on Wed, Jun 05, 2013 @ 08:19 AM

There is a lot of talk about the push and mandates about modernizing and moving our electrical system to the Smart Grid. The electrical grid in the USA is out of date and doesn’t allow for the use of modern technology to provide more efficient and cost effective power generation, delivery, and consumption of electrical energy. The goal of modernizing our electrical grid by using current technologies is to provide more reliable distribution, improve fault detection and allow self-healing of the network without the intervention of technicians, create greater efficiencies in monitoring and load adjustments based on peak using times and locations, provide greater security to the grid, and to empower the consumer to be able to better manage their usage and costs.

Future Smart Grid

To make the Smart Grid a reality the implementation of modern communication technology needs to be deployed. Technologies such as, smart meters, intelligent thermostats and appliances, real time sensor metering and controls, and remote monitoring all require the use of reliable IP based communication infrastructure networks. The problem is electrical utility organizations’ electrical network (substations and end consumers) covers vast geographic areas. Many of which are not always near readily available fiber connectivity. This is especially true in rural areas. Even in urban areas there is sometimes difficulty in last mile connections where needed.

In order to build out the Smart Grid wireless backhaul plays a vital role and solves many problems by providing necessary high-speed bandwidth for the use of Smart Grid technologies. By the utilities using wireless Ethernet bridge technologies the utilities gain greater security by having a private network, they can also build in wireless redundancy for greater reliability, have quicker implementation time, realize huge cost savings, provide their workforce with wireless mobility, and have the flexibility for future expansion and growth.

Utility Wireless

Since the utilities have right-a-way access and easements it becomes easy for them to build out a wireless backhaul network using point to point wireless bridges. Fiber equivalent networks can be achieved with licensed microwave backhaul (see more at “Understanding Microwave Communication Frequencies and Point to Point Wireless Bridge Compared to Fiber”). Today a licensed microwave link can provide 6Gbps+ full duplex wireless connectivity. Using a wireless repeater can allow for long distance wireless backhaul. A typical microwave link can be deployed beyond 20 to 30 miles in a single point to point wireless bridge.

With a core high bandwidth microwave backhaul infrastructure, the use of high speed point to multipoint wireless can be deployed for last mile wireless connectivity. Technologies like WiMax backhaul and LTE allow for licensed interference free point to multipoint wireless bridge connections. True usable IP bandwidth of 10Mbps to 100Mbps can be delivered to the field using point to multipoint wireless Ethernet bridge systems. Wireless Mobility can bring high-speed data connections to workforce vehicles allowing for remote access of data files, email, work orders, and VoIP.

Bringing wireless Ethernet connectivity to the grid and to substations provides the ability to not only perform RTU / PLC monitoring and management, but also opens the way for wireless video surveillance and perimeter security, access control, alarm monitoring, remote workforce capability and access, and real time data collection. Most of all, wireless backhaul allows the integration of other third party Smart Grid devices like Smart Meters, remote switching, and SCADA.

Wireless Ethernet bridges bring the necessary infrastructure to Smart Grid technology. The main issue is that electrical organizations are really good at power generation and delivery, but they are not necessarily experts in telecommunications. It’s not best practices for them to build the internal expertise to build or maintain a large complex wireless backhaul network. Recently attending a Smart Grid conference it became apparent that many electrical organizations have relied on manufacture vendors, whose only goal is to move their product, to guide and influence the type of wireless hardware and wireless network topology they are trying to use for their telecommunications infrastructure. This becomes very problematic when it comes to the quality of RF (radio frequency) devices being used and the overall wireless network design.

In order to provide a long-term, reliable, interference free, and scalable wireless infrastructure it is important to use best of breed, carrier grade infrastructure, along with the use of proper frequency spectrum. Also from a security standpoint the proper wireless devices should be used and configured properly. It’s amazing to see how many electrical organizations have deployed value line, Wi-Fi chipset based, unlicensed wireless Ethernet bridges using 900MHz, 2.4GHz, 4.9GHz, and 5.8GHz for their mission critical network. Many of these systems only have a five year mean to failure time rating and are easily effected by wireless interference. These systems are in themselves not bad or lack some quality, but they fit where they fit and the Smart Grid infrastructure may not be the best use of these unlicensed wireless Ethernet bridge systems.

Electrical utilities have a lot of licensed microwave spectrum available for their use for free or at a very low cost basis. On the flip side many microwave radio systems are built for true full duplex operations, operate at the lowest possible latency, run interference free, and are built for a 20+year life cycle. There is also hardened point to multipoint wireless systems and SCADA telemetry radios designed for EMI protection precisely for use around high voltage applications. 

As with any technology there is value level and enterprise level equipment and software. For mission critical wireless networks there is a large distinction between the quality, performance, and reliability of the two. Smart Grid implementers need to receive more education and proper knowledge transfer from the wireless backhaul industry so that the right business choices can be made on behalf of the country’s critical electrical infrastructure and ultimately the end consumer.

Tags: Alpha Omega Wireless, Point to Point Wireless, Licensed wireless, General, Wireless Industry, AO Wireless, Point to Multipoint

Point to Point Wireless Bridge Through a Glass Window

Posted by Joe Wargo on Thu, Mar 14, 2013 @ 03:37 PM

When we think of wireless backhaul and microwave communications we typically think of a point to point wireless bridge that is from communication tower to another tower or building rooftop to another building rooftop. In most all cases for wireless point to point microwave backhaul to work there needs to be line of sight (“LOS”) from one antenna to the other. Some other important factors for a point to point wireless bridge to function correctly is to have proper Fresnel Zone clearance and calculated system gain.

In order to make sure a wireless point to point link, whether you are talking about a licensed microwave backhaul or a 5GHz unlicensed point to point wireless Ethernet bridge, will function properly and have predictable reliability a proper wireless network design and path calculation needs to be performed. By performing a quality (radio frequency) RF path calculation we can determine the Free Space Path Loss and overall wireless system gain based on a particular wireless radio system’s receiver sensitivity threshold. This helps determine frequencies that can be used, output power, RSL (received signal level), polarizations, antenna sizes, and antenna heights. The other factor in designing a point to point wireless bridge is to take into account the signal to noise ratio (the incoming signal quality level over any external frequency noise / interference).

With a typical outdoor point to point wireless link it is easy for a wireless installation company to perform all the necessary path calculations and engineering to design a wireless point to point link with 99.999% predictable reliability (<5min of predictable outage a year). But what happens if you don’t have roof rights access to do a wireless installation on the building’s roof or there is no way to cable from the network room / IDF to the roof? Yet from the building’s window you can look out and see the other end clear as day with good LOS. This happens in the enterprise world where a company may occupy a certain floor of a high rise but can’t get roof right access either because of physical challenges or lease contract issues. Why not just put the antenna behind one of the windows?

Shooting a point to point wireless backhaul through glass is not as easy as it may seem. Wireless bridges are in essence sound waves that operate in frequencies that humans can’t obviously hear. Most all glass used in building construction have some sort of sound attenuation (whether just buy the materials in the glass or on purpose to block out outside sound). In the past most glass windows had lead or other metallic compounds in them. Newer windows use a special sound attenuation film to make the inside more quite. Sometimes this glass also uses special films for polarization to block sun glare.  This attenuation causes the signal quality of the point to point wireless system to be degraded in the form of signal loss.

Wireless through glass

Windows can also have a reflective property that can cause the wireless bridge to bounce the TX (transmit) signal back into itself causing self-interference and distortion on the radio system. When this happens we see a lot of errors on the network as BER (Bit Error Ratio), Jitter, and CRC errors. This can also over time damage the wireless point to point radio end.

So can it be done? Yes! Over the years we have successfully done wireless installations from behind glass and recently did a critical point to point wireless backhaul at SXSW for a major video streaming event. How did we do it? First we took into account all the possible issues as mentioned above. The first step was to calculate the link budget by doing a detailed path calculation by building in the possible loss due to the attenuation of the glass. Because the link had to be installed using an unlicensed wireless Ethernet bridge we decided to use a MIMO (dual polarization radio that uses both vertical and horizontal polarized TX/RX signals).  In the recent case the shot was very short (less than one mile) and the environmental noise in 5.8GHz was extremely high. We decided to use 5.3GHz band that operates in DFS (dynamic frequency selection – basically channel hopper) in the USA.  Then comes the fun part of the installation. We had to play with the polarizations of each end’s antennas, adjust the power output levels on each side separately, and move the radio end behind the glass back and forth from the glass to find the optimum distance of the antenna from the glass.

Wireless Glass Shot

There are other radio specific settings that can be applied to help the radio from getting false radar detection (which is a requirement of the FCC that causes the radio to jump channels and lock out various frequencies if it sees a DFS channel signal from another source. This happens when the glass reflects its own signal back into itself out of phase. The system needs to be adjusted so that it doesn’t think its own signal is from another outside source. If the 5.8GHz bad was clean of outside interference you still need to adjust so that the radio doesn’t take on errors.

At the end of the day putting one end of the wireless point to point system behind glass allowed over 100Mbps of bandwidth to be used for the event. Time and material costs were saved by not having to run fiber (due to the length of the cable run to the nearest IDF (network closet) to the roof along with power. It is not racommended to shoot point to point wireless through a glass window and it is always Best Practice to go from rooftop to rooftop, but sometimes its the only option. It takes a lot of planning and back and forth testing, but if the wireless installation is done properly shooting wireless backhaul through glass can work!

Tags: Alpha Omega Wireless, Point to Point Wireless, General, Un-lincesed Wireless, AO Wireless, Wireless 101

Wireless Backhaul Used All Over SXSW

Posted by Joe Wargo on Sat, Mar 09, 2013 @ 06:06 PM

Wireless backhaul is used all over Austin during the SXSW event. In order to get Internet connectivity to major events and venues wireless bridges, in forms of point to point wireless bridge and point to multipoint wireless bridge technologies are used. At the events and venues Wi-Fi is also deployed to help provide wireless communications to enhance the user experience.

Wireless Repeater SXSW

At the SXSW 2013 (South by Southwest) Film and Music Festival tens of thousands of people from around the world swarm to Austin, TX to experience the latest in film, technology, gaming, and see the over 2000 bands that playing live at over 200 venues. The SXSW event merges film, music, and technology all in one place. Technology and social media are playing an even larger role at SXSW. Major technology, social media, and corporate giants like, Dell, Samsung, Google, Microsoft, AT&T, Yahoo, and others all have a presence and host amazing parties and events at SXSW.

In years past, one of the biggest complaints was the lack of broadband connectivity, that's if you could get connected at all. With so many people in such a concentrated area many of the cellular networks get overloaded and come to a crawl. Add to the fact that there is now a 2 to 1 ratio of Wi-Fi enabled devices to people. Laptops, iPhones, iPads, and all the other smartphone devices were present everywhere. This year SXSW wants to make sure that they can enhance the attendees experience by bringing wireless bandwidth to the people. Plus all the major event hosts are using a large amount of wireless bandwidth for production and exhibit displays.

The wireless communication at SXSW is being done by deploying a GigE microwave backhaul from a major local telecommunication provider to the roof of a hotel close to all the action. That location acts as a wireless repeater. Multiple point to point wireless bridge links are used from the wireless repeater location to provide wireless connections from 400Mbps full duplex wireless connectivity to 100Mbps wireless bridges.

Also from the same roof top that the wireless point to point links are initiated, point to multipoint wireless systems are used to provide multiple wireless connections. The point to multipoint wireless bridge end nodes receive anywhere from 10Mbps up to 100Mbps of wireless bandwidth.

In order to pull off having so much wireless frequency all over town coming from the wireless repeater site, multiple radio frequencies are used during the wireless network design and wireless installation. One of the largest challenges is the fact that during SXSW there is a lot of wireless interference caused by so many people deploying outdoor wireless, to include outdoor Wi-Fi.  Plus, since SXSW is a temporary event, the use of licensed microwave is not feasible and unlicensed wireless has to be used. Frequencies ranging from millimeter-wave (60GHz), unlicensed 24GHz point to point microwave, and unlicensed 5.3GHz and 5.8GHz wireless radios are used.

For the Wi-Fi at some of the events, wireless Wi-Fi arrays are used to deploy high density wireless communications (see “AO Wireless Deploys Xirrus Arrays at SXSW for High-Density Wireless”). SXSW doesn’t provide Wi-Fi at all the events but at some of the major ones they do in order to make sure the end user experience is enhanced. There is just too many venues to put Wi-Fi at all of them.

By using wireless backhaul, both point to point wireless bridges and point to multipoint wireless Ethernet bridges, wireless connectivity is deployed to venues and events that can be in buildings or out in the middle of a field or parking lot. Broadband is made available for production, point of sale systems, ticketing systems, exhibit interaction, and most of all an enhanced attendee experience.

Wireless backhaul used for the core network distribution and last mile wireless used to provide bandwidth to special event venues gives SXSW a lot of flexibility and the ability to provide Wi-Fi to attendees. Once the event is over the equipment will be removed as if it was never there.

Tags: Point to Point Wireless, General, Un-lincesed Wireless, Wireless Industry, Point to Multipoint

Wireless Backhaul Used for Live Concert Events by SXSW

Posted by Joe Wargo on Tue, Mar 22, 2011 @ 09:58 PM

What do you do when you need to provide Internet connectivity for one of the largest live music and film festivals in the world? You build out a wireless backhaul network using point to point microwave!

SXSW2011
At the 2011 SXSW (South by Southwest) Film and Music Festival tens of thousands of people from around the world swarmed to Austin, TX to experience the latest in film and see the over 2000 bands that played live at over 200 venues. The SXSW event merges film, music and technology all in one place. Technology is playing an even larger role at SXSW. It was the place that Microsoft launched their new IE9 platform.

Austin was filled with members of the media reporting on the events and who's making news in the film and music industry. Bloggers are found on every corner writing about who's playing and getting signed to large record labels. Live concerts were broadcasted live over the Internet. Bands like the Foo Fighters, Duran Duran, Blue October, Kid Rock, Snoop Dogg, Bob Schneider, Crystal Bowersox, and many others showed up without much warning to perform.

In years past, one of the biggest complaints was the lack of broadband connectivity, that's if you could get connected at all. With so many people in such a concentrated area many of the cellular networks get overloaded and come to a crawl. Add to the fact that there is now a 1 to 1 or even a 2 to 1 ratio of wi-fi enabled devices to people. Laptops, iPhones, iPads, and all the other smartphone devices were present everywhere. This year SXSW wanted to make sure that they could enhance the attendees experience by bringing wireless bandwidth to the people.

SXSW could get a large (GigE) Internet pipe to their corporate office but couldn't get connectivity to the major facilities by the local telecommunication providers. With months of planning At&t, Time Warner, Verizon, etc. failed provide a temporary wireless solution. So they turned to Alpha Omega Wireless to solve the problem. We were able to build out a high bandwidth, point to point wireless backhaul network from their facility to some major venues around Austin. Even though the fiber providers couldn't do it with months of advanced notice the wireless installation of SXSW's wireless broadband was deployed in days.

Wireless Backhaul at SXSWBecause of the bandwidth demand we used full duplex microwave radios, such as SAF Lumina licensed microwave and 24GHz unlicensed wireless ethernet bridges, BridgeWave 60GHz wireless links, and a few unlicensed wireless bridges for specific events. Most venues were able to get 100Mbps full duplex wireless connectivity.

Wireless backhaul used for the core network distribution and last mile wireless used to provide bandwidth to special event venues gave SXSW a lot of flexibility and the ability to provide wi-fi to attendees. Once the event was over the equipment was removed as if it was never there.

Tags: Alpha Omega Wireless, Point to Point Wireless, General, Wireless Industry, wireless video, Wireless 101

Wireless Backhaul is a Winner in Natural Disasters

Posted by Joe Wargo on Sat, Mar 12, 2011 @ 11:07 PM

As a Wireless Integrator, that has deployed thousands of wireless Ethernet bridges, I am a firm believer that wireless technology for broadband backhaul not only provides a phenomenal value but in many cases is a better technology for broadband backhaul than traditional fiber / copper infrastructure. Wireless backhaul, whether we are talking about point to point wireless backhaul, using licensed microwave or an unlicensed wireless Ethernet bridge, point to multipoint wireless Ethernet backhaul (using 5GHz unlicensed wireless band or WiMax), or wireless mesh,  can provide greater reliability, last mile presence, quicker deployments, and is far cheaper than hard line infrastructure.

You can say, “Well you do wireless backhaul for a living so you are biased.” Let me tell you about a recent trip I took to a third world country and experienced a natural disaster. Recently I was on the island of Roatan in Honduras while a hurricane passed over the island. We experience sustained winds of 70+mph (with gusts of 100mph) and about 4 inches of rain. During the storm I was uploading photos to Facebook because I had a fast, uninterrupted full 3G cellular services without any outage or latency.

Roatan Hurricain
Remember Katrina? Well most of all the fiber networks in New Orleans were wiped out and untill today it hasn't been all fully replaced. Immediately after the hurricain there wireless networks were installed all over to provide voice and data connectivity.

Island TowerAll throughout the Caribbean and Central America most countries have leapfrogged the USA in the use of wireless backhaul for telecommunications and broadband services. A lot of countries can’t run fiber due to terrain (jungles, mountains, waterways, and a lack of infrastructure) and the pure inability to afford a fiber build out. Wireless though is everywhere. You can be in the jungles of Belize and have a solid 3G connection.  

In order to get broadband connectivity and voice service many of the Caribbean islands depend on point to point microwave connectivity. Then cellular and point to multipoint wireless is used to distribute wireless broadband around the island. One would wonder how well the service coverage would be and the quality of the wireless installation would be in a third world country. After seeing first hand during a hurricane I would say it’s pretty good! Back home in the USA where I am served by a local cable provider my internet connection gets knocked out all the time when we have a storm of 30 to 40MPH winds

Wireless backhaul is far easier and cheaper to deploy than fiber. Broadband wireless networks also allow for a lot of flexibility in access to a POP (point of presence) and network design. The greatest concern most people have with using wireless backhaul is if it’s reliable. From what I experienced I would say it’s extremely reliable. Understand that microwave radio equipment uses extremely little power. In most cases a microwave radio can be powered on a battery or over solar. Most outdoor radio units use -48vDC at 30W. A standard UPS can keep a wireless end node powered for hours. If installed properly a wireless network can provide 99.999% reliability. See my previous articles: “Does Weather Effect Wireless? The 5 Misconceptions - Part 1” and “Is Wireless Reliable? - The 5 Misconceptions - Part 2.”

Like I always say, if wireless backhaul is properly engineered and the wireless installation is done properly it is extremely reliable!

Tags: Point to Point Wireless, Licensed wireless, General, Un-lincesed Wireless, Wireless Industry, Point to Multipoint

Wireless Backhaul Makes Financial Sense

Posted by Joe Wargo on Fri, Sep 24, 2010 @ 05:06 PM

Wireless backhaul, often referred to as fixed wireless backhaul or wireless Ethernet bridges, has become a standard for creating network connectivity between locations. Wireless backhaul can be used for establishing data network connections from building to building, field locations to a network presence, connecting network fiber segments, or last mile connections, etc. Wireless Ethernet bridges can also be used for connecting devices on to networks, like IP video cameras, SCADA devices, client devices, phones, two-way radio / pagers, etc.

Wireless backhaul can be in the form of point to point wireless, point to multipoint wireless, or wireless mesh configurations. Wireless bridges can be licensed microwave links or unlicensed wireless Ethernet bridges. A licensed microwave link or wireless Ethernet bridge can provide throughput as low as 10Mbps up to GigE full duplex (with gigabit wireless).

Wireless Ethernet bridges, allow you to eliminate reoccurring costs of leasing fiber from telecommunication companies, eliminate the cost of additional head end equipment, and AES encryption hardware devices. Wireless Ethernet bridges preserve native IP throughout the system. Because you own the microwave link connection and not lease it, ROI is maximized with a low CPEX. You also gain the peace of mind of having control over your own infrastructure.

Take for example the cost to lease a DS3 (45Mbps) connection through a carrier. A typical scenario is that it costs roughly $4000.00 a month with a 3 to 5 year contract. Over three years that’s $144,000.00! Let’s not forget that it also typically takes 3 to 6 months to provision.

Now for comparison, let’s look at a point to point wireless Ethernet bridge using a licensed microwave radios. Although you can install a 50Mbps full duplex (100Mbps aggregate throughput) wireless bridge, most systems are typically purchased at 100Mbps full duplex (200Mbps aggregate throughput) because there just isn’t much cost differential between a 50Mbps and 100Mbps full duplex licensed microwave link. It’s typically the same radio system and just software throttled. Most licensed microwave radios are capable of 366Mbps full duplex (732Mbps aggregate throughput) and 60GHz and 80GHz millimeter wave is GigE full duplex.

A typical 100Mbps full duplex licensed microwave link, which can be installed in several days rather than 4 to 6 months like a DS3, would have a CAPEX of $20,000.00 to $30,000.00 depending on the frequency and distance. Say you add in a 5 year advanced replacement manufacture warranty and annual support from the integrator at a cost of $15,000.00. That’s roughly $45,000.00 compared to $144,000.00. That gives you an ROI of roughly 11 months. Plus you have over double the bandwidth!

Wireless ROI

As you compare higher bandwidths like leased 100Mbps or gigabit fiber the ROI is increased even further. Most GigE wireless backhauls have an ROI of 3 to 4 months. That’s it. No more reoccurring costs because you own it. If a wireless Ethernet bridge is properly engineered and the wireless installation is done by a professional wireless integrator a point to point wireless backhaul can provide greater security over leased lines and give 99.999% reliability (meaning <5min of predictable outage a year). Most telecommunication companies can only guaranty 99.9% on a SLA because they know they’ll have network outages throughout the year.

Tags: Point to Point Wireless, Licensed wireless, General, Un-lincesed Wireless, Wireless Industry, Point to Multipoint, wireless mesh, Wireless 101

Wireless Backhaul Can Prevent Network Outages

Posted by Joe Wargo on Fri, Aug 27, 2010 @ 05:09 PM

Wireless backhaul in the form of point to point microwave - licensed microwave links or unlicensed wireless Ethernet bridges, point to multipoint wireless Ethernet bridges, or wireless mesh network infrastructures can provide up to 99.999% reliability and keep you up and running when your telecommunications provider fails you.

Redundant Wireless backhaul Do you ever experience downtime on you network due to outages with your telecommunications provider, such as: AT&T, Verizon, or Comcast? What does a network outage cost you organization in dollars and man hours due to lack of productivity and internal communication or with clients? What do you say? This never happens? Think again!

You think you’re safe because you have a point to point fiber connection from your telecommunications vendor? Read my article “Outdoor Wireless Bridges or Fiber, Which Do You Trust.” What if you use an MPLS network, doesn’t that provide you failover redundancy? What about having different carriers for a backup connection? Or what about using cellular modems as a last result? Aren’t you protected by having redundancy? Not really!

The true fact is that the major telecommunications companies have outages all the time. December 11th, 2009 San Francisco experienced a several hour AT&T outage. July 21, 2010, AT&T Wireless had a regional outage for hours in NC. On April 9th, 2009 Santa Clara County, CA declared a local emergency when someone intentionally cut an underground fiber optic cable in South San Jose taking out cellular, internet, and phone usage to AT&T, Verizon, and Sprint/Nextel customers. This affected multiple cities. A local hospital had to cancel surgeries due to the emergency. Recently, Union City, CA experienced a city wide outage when central office went dark. All voice, internet, MPLS, cellular, etc. was out for almost 10 hours.

So what happens when you have no cellular, internet, data, or voice connectivity?  For some organizations they have critical operations that have to be monitored so they have to be physically manned if the network goes down. What’s the cost to deploy people to remote sites or work overtime during the middle of the night? What about lost data? Some organizations can run into the millions of dollars an hour during a network outage.

Too often organizations fail to ensure their communications, both data and voice, are protected by not having appropriate redundancy or just flat out relying on a third party telecommunications vendor. Many times those who have a redundancy solution in place don’t have “True Redundancy.” Many overlook their WAN connections or have single point of failures in using the same medium (such as fiber), or taking the same external routes (out the same conduits from their MPOE), or have unknown points of failure by relying on third party telco providers’ networks. You can have MPLS but if you first connect through a local central office and that CO goes dark there is an issue. Even with backup power central office have gone dark (recently in Union City, CA) and fiber lines have been cut (San Jose, CA).

Licensed Microwave LinkWireless backhaul connectivity, both point to point wireless links and point to multipoint wireless bridges, provide an avenue for extremely reliable primary connections and for creating “True Redundant” network paths and connections. With both unlicensed wireless Ethernet bridges or licensed microwave links, an organization can create a completely separate stand alone network and eliminate the dependency on third parties equipment and facilities, and remove the risk of failure of fiber cuts off site and out of an organizations control.

So why own your own wireless backhaul network? Wireless backhaul, with proper wireless path engineering, the use of the right outdoor wireless backhaul equipment, and proper wireless installation can provide truly reliable networks. See articles, “Is Wireless Reliable? - The 5 Misconceptions - Part 2” and “Outdoor Wireless Installation Done Properly.”

Wireless backhaul can have multiple advantages. Wireless networks can be used for primary or redundant links. Throughput can match or even exceed that of a leased line from a telco. You can get connectivity where you can’t get it from a telco for last mile solutions. Wireless backhaul typically has an extremely low ROI and can eliminate reoccurring lease line costs. Wireless installation can be done in days compared to months of provisioning time from a telco. Also with wireless backhaul you have complete control of your network. Even in the event of equipment failure wireless nodes can be restored quickly by simply hot swapping the radio communications equipment.

That’s right no more trouble tickets from some call center agent in another country!

Tags: Point to Point Wireless, Licensed wireless, General, Un-lincesed Wireless, Wireless Industry, Point to Multipoint, wireless mesh, Wireless 101

Wireless Backhaul Communication Towers are a Great Investment

Posted by Joe Wargo on Sat, Aug 21, 2010 @ 03:49 PM

Wireless backhaul, also known as fixed wireless, technology has become a standard means of creating a data communications link between locations. Microwave radio links can be used to make data connections from building to building, to connect remote field locations to a network presence (also known as last mile wireless), connecting network fiber segments, and for connecting network devices (like IP video cameras, SCADA devices, client devices, phones, two-way radio / pagers, etc.) to networks.

Wireless backhaul can be in point to point wireless, point to multipoint wireless, or wireless mesh configurations. Wireless bridges can be licensed microwave links or unlicensed wireless Ethernet bridges. A licensed microwave link or unlicensed wireless Ethernet bridge can provide throughput as low as 10Mbps up to GigE full duplex (with gigabit wireless). There are many wireless backhaul radio platforms offering a solution to just about any application. Wireless backhaul systems can provide 99.999% reliability. A Point to point wireless Ethernet bridge or licensed microwave link can enable high capacity wireless backhaul connections from less than one mile to more than 50 miles, without performance degradation. Licensed microwave links and unlicensed wireless Ethernet bridges enable carrier class delivery of IP services with full wire-speed performance. Typical latency on a wireless Ethernet bridge or licensed microwave link is under 1ms.

communication towerEven though there are some outdoor wireless radio systems that can do non-line-of-sight (“NLOS”), the majority of wireless backhaul requires line-of-sight (“LOS”) with proper Fresnel Zone clearance to properly operate. This means the transmitting and receiving antennas most be able to see one another with any obstructions. In most cases this requires mounting the antennas on a structure with adequate height to create LOS.

Many times when doing a point to point microwave link from one tall buildings roof top to another’s it can be easy to have LOS.
Sometimes this is not possible. Putting a antenna mast on a roof top can sometimes be sufficient. Other times it may become necessary to construct a communications tower. The first reactions that come to a client’s mind when a wireless installation vendor says a tower need to be built is no way. Several misconceptions arise. Towers are too expensive, unsightly, and are a huge construction project. Reality is that none of these are true.

Communication towers are relatively inexpensive to have installed. Leasing high speed bandwidth form a telco or installing dark fiber is extremely expensive. Point to point wireless backhaul or creating point to multipoint wireless Ethernet bridges for last mile connections have a rapid ROI (typically less than 6 months with no reoccurring costs). Adding a tower into the solutions may only add 3 to 4 months until the CAPEX achieves and ROI. Free standing towers from 40ft to 80ft in height can be installed from $15,000 to $35,000. That is not much money when you look at the big picture.

Build it and they will come! Communication towers are typically built for an initial solution but can offer great potential for future wireless backhaul projects. The tower may have been built to accommodate a point to point wireless bridge like a licensed microwave link between two locations. Now in place it may be used for other wireless Ethernet bridges or point to multipoint last mile wireless bridge connections. Odds are that if you needed to build a tower to gain some height in a geographical area other may need some height too. Leasing opportunities can come knocking on the door. Tower can create a great source of re-occurring revenue for an organization by leasing antenna space off to other parties that need a repeater location or leasing space to the mobile carriers, like At&t, Verizon, Sprint, Clearwire, etc. These opportunities can pay for the tower itself.

Roof top towerThe fact is that there are tower all around us and we just don’t even notice them. Microwave communication towers tend to blend into the skyline. So many times we hear about cosmetic concerns when it comes to mounting antennas on buildings but the fact remains that they are all around and no one ever notices them (unless you are in the wireless industry and pay attention to them). Many are less obtrusive that satellite TV dishes everyone mounts on their homes!

Microwave tower have been manufactured in ready to deploy configurations and even come with approved engineered design drawings making the permitting process simple. Communication towers used for wireless backhaul can typically be installed within a few days and offer a long term solid structure for mounting wireless backhaul antennas and equipment.

Tags: Point to Point Wireless, Licensed wireless, General, Un-lincesed Wireless, Wireless Industry, Point to Multipoint, Wireless 101

Choosing the Right Outdoor Wireless Vendor

Posted by Joe Wargo on Fri, Aug 13, 2010 @ 05:11 PM

Choosing the right outdoor wireless vendor is critical for the success of a wireless backhaul project, whether it’s a licensed microwave link, unlicensed wireless Ethernet bridge, wireless mesh, WiMax, point to point wireless backhaul, or point to multipoint wireless Ethernet bridges. Not all wireless vendors or wireless installation companies are the same. Too many companies and people claim to be RF Engineers or outdoor wireless backhaul experts without ever having any real world project experience.

Wireless Integrator

Some wireless vendors are just “box movers” with a sole purpose to sell hardware. These companies typically do not have any field experience with wireless installations, wireless site surveys, or spectrum analysis. They may be able to do wireless path calculations using some software programs, but the information they use for the outdoor wireless network design is based on information they receive from the client. Because they lack any real world filed experience they tend to miss the fine intricacies that can make or break an outdoor wireless backhaul project. They also typically try and push to the customer whatever product makes them the best margins.

Some “so called” wireless vendors come with the IT networking background. They too lack any real world outdoor RF or microwave experience. They may focus on a conceptual wireless network design but have no understanding on the details of what it takes to actually install and maintain an outdoor radio system. Everything looks great on paper but when it comes time to install the system and make it work everything goes south when there is a huge groove of trees or buildings in the way! These companies might be good at the network integration portion of a project but have no clue to the way outdoor wireless systems perform in the field or what it takes to properly do a wireless installation.

There are some great outdoor wireless vendors that have a ton of outdoor radio system experience but lack any knowledge of integrating the wireless infrastructure to the client’s network.

Wireless antenna installationA true outdoor wireless integrator will have in house experience with all aspects of an outdoor wireless backhaul system. A good wireless integrator will know how to properly design a wireless backhaul network, perform accurate wireless path calculations, and understand exactly what it takes to deploy a wireless backhaul network.

The good companies have experience with point to point unlicensed wireless Ethernet bridges, licensed microwave links, wireless mesh, point to multipoint wireless bridges, etc. These companies know the industry and can make appropriate recommendations on whether unlicensed wireless Ethernet bridges or licensed microwave links are right for the backhaul solutions or which is the right fit between wireless mesh and point to multipoint wireless bridges. Good wireless vendors also understand IP networking and can integrate the outdoor wireless system into the client’s network.

The good outdoor wireless integrators have experience working with towers, poles, and on roof tops. They know exactly what the mounting and power solutions need to be and what goes into the proper wireless installation of the radio equipment. True wireless integrators can properly plan, price, and insure success of an outdoor wireless backhaul project.

What about after the project? Many “so called” wireless vendors come across knowledgeable about designing a radio communication system or claim that have a lot of wireless installation experience. The question to ask is if something goes wrong or there is an issue down the road, will the wireless vendor be there for support. Did the wireless vendor rely on subcontractors for the project? Will they need to coordinate with subcontractors to support the client’s system? What will they charge to perform support if they do need to rely on a sub? These are important questions. The “so called” wireless vendors can’t control if their subs will be around in the future or what they may charge. What about the amount of time it would take to get different companies involved and dispatched?

A good wireless integrator performs all the work themselves and does not rely on subcontractors. They can take full ownership of the outdoor wireless system and can support it.

Wireless backhaul, whether you are talking about wireless mesh, WiMax, point to multipoint wireless, or point to point wireless backhaul, systems can function with extreme reliability and predictability with proper wireless network design, wireless engineering, and a quality wireless installation. The mobile wireless carriers take this matter critically and waste no expenses on ensuring their systems are installed properly. Any down time can cost them tens of thousands of dollars. The craziest thing is when organizations are willing to rely on wireless technology for their primary connectivity but pinch pennies by choosing the cheapest and many times least experienced wireless vendor or wireless installation companies for their projects.

Tags: General, Wireless Industry, Wireless 101