Subscribe by Email

Your email:

Wireless Installation at 400ft

400ft tower climb

Featured Wi-Fi Partner

Visit our Xirrus Wireless Showcase

Joe Wargo Speaks at SXSW on Wireless and Wi-Fi

Joe Wargo Speaks SXSW

www.flickr.com
Alpha Omega Wireless' items Go to Alpha Omega Wireless' photostream

Alpha Omega Wireless Blog

Current Articles | RSS Feed RSS Feed

Point to Point Wireless Bridge Compared to Fiber

  
  
  
  

As a country we have relied on fiber communications as our primary means of wide area network connectivity. Fiber though is extremely expensive to provision due to right away access, permitting, construction, labor, and cost of material.  Meanwhile a lot of other countries have leap frogged the USA by deploying fixed wireless microwave communications. Many countries around the world are deploying wireless bridge microwave backhaul as their primary backbone telecommunications network. The costs of deploying a point to point wireless bridge can have a ROI of less than three months compared to even leasing fiber that is pre-existing.

Wireless backhaul can be deployed in a matter of weeks if not days. Wireless bridges such as unlicensed 5.8GHz point to point wireless and point to multipoint wireless, in 5.8GHz and 3.65GHz WiMax can be purchased off the shelf and installed in a few days. Licensed microwave communications in the form of a point to point wireless bridge, also called fixed wireless bridges, can be obtained and installed in a few weeks. (see more information "Understanding Fixed Wireless Backhaul Configurations")

wireless bridge

With advancements in technology and newer regulation from the FCC, wireless Ethernet bridge systems can deliver over GigE (more than 1Gbps full duplex) throughput. Equivalent to that of fiber. A fixed wireless microwave link can go upwards of 50 miles. If proper wireless system design is done, a fixed wireless Ethernet bridge can provide a predictable reliability of 99.999% uptime. That's less than 5 minutes of predictable outage a year.

Most people don't think about the fiber once it leaves their building or know the path it takes. Fiber in urban areas runs inside sewer lines, underground conduits, and aerial on phone and light poles. In rural areas fiber mostly runs aerial along telephone and electric poles. Ever drive down a road and see a bunch of wood telephone poles leaning from side to side? Well that might just be the fiber your network is running on.

Fiber Cut

Ever question how long it takes for a telecommunications company to do a truck roll to repair a cut fiber? If it's a clean break fiber can sometimes be fusion spliced back together. In most cases where a fiber pole goes down or gets ripped out by a backhoe, the fiber gets stretch and has to be replace but cutting it at two ends and a new piece fusion spliced back in. This can take hours if not days to accomplish. What would be the cost to your business if that occurred?

Microwave communication can be in the form of a point to point wireless backhaul, a point to multipoint wireless bridge, or a mesh wireless Ethernet bridge. If a microwave radio fails it can be swapped out in the matter of minutes (provided a spare is maintained). After an earthquake or other natural disaster, a wireless system can be realigned immediately getting communications back up and running.  The biggest concern with wireless backhaul is the potential for wireless interference. Using a licensed microwave link can solve any interference concerns.(See more information "Wireless Backhaul Can Prevent Network Outages")

In order to get broadband across the USA at any reasonable time frame and at realistic costs we must turn to wireless backhaul technology. Fixed wireless, using both point to point wireless bridges and point to multipoint wireless (LTE and WiMax) can help expand our wide area network reach with carrier grade performance and reliability.


Comments

Currently, there are no comments. Be the first to post one!
Post Comment
Name
 *
Email
 *
Website (optional)
Comment
 *

Allowed tags: <a> link, <b> bold, <i> italics